Problem Sheet 4

1. a) Evaluate

$$
\sum_{n \leq x} \frac{\sigma(n)}{n}
$$

b) By Partial Summation deduce

$$
\sum_{n \leq x} \sigma(n)=\frac{\zeta(2)}{2} x^{2}+O(x \log x)
$$

Hint Find f such that $\sigma(n) / n=\sum_{d \mid n} f(d)$.
2. On Problem Sheet 3 it was shown that $Q_{k}=1 * \mu_{k}$ where Q_{k} is the characteristic function of the k-free integers while $\mu_{k}(a)=1$ if $a=m^{k}$ for some integer $m, 0$ otherwise. Use the Convolution Method to show that

$$
\sum_{n \leq x} Q_{k}(n)=\frac{x}{\zeta(k)}+O\left(x^{1 / k}\right)
$$

for $k \geq 2$.
3. Look back in the notes to recall how the result

$$
\sum_{n \leq x} \frac{1}{n}=\log x+O(1)
$$

was improved to

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n}=\log x+\gamma+O\left(\frac{1}{x}\right) \tag{13}
\end{equation*}
$$

Use the same method to improve Corollary 4.7 to

$$
\sum_{n \leq x} \frac{Q_{2}(n)}{n}=\frac{1}{\zeta(2)} \log x+C+O\left(\frac{1}{x^{1 / 2}}\right)
$$

for some constant C.
(Unfortunately, this doesn't directly lead to an improvement for $\sum_{n \leq x} 2^{\omega(n)}$, just as (13) doesn't directly lead to an improvement for $\sum_{n \leq x} d(n)$.)
4. Prove by induction that

$$
\begin{equation*}
\sum_{n \leq x} d_{\ell}(n)=\frac{1}{(\ell-1)!} x \log ^{\ell-1} x+O\left(x \log ^{\ell-2} x\right) \tag{14}
\end{equation*}
$$

for all $\ell \geq 2$.
Hint Assuming (14) use partial summation to prove a result for $\sum_{n \leq x} d_{\ell}(n) / n$. Then use $d_{\ell+1}=1 * d_{\ell}$ to get a result for $\sum_{n \leq x} d_{\ell+1}(n)$.
5. a) Prove that

$$
\sum_{n \leq x} \frac{\sigma(n)}{n^{2}}=\zeta(2) \log x+O(1)
$$

b) Prove that

$$
\log x \ll \sum_{n \leq x} \frac{1}{\phi(n)} \ll \log x .
$$

Hint for part b) use a result from Problem Sheet 3 which combines $\sigma(n)$ and ϕ.
6. In Problem Sheet 4 the characteristic function, q_{2}, of square-full numbers was defined. So on prime powers $q\left(p^{a}\right)=0$ if $a=1,1$ if $a \geq 2$. It was shown there that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{q_{2}(n)}{n^{s}}=\zeta(2 s) \frac{\zeta(3 s)}{\zeta(6 s)} \tag{15}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{Q_{2}(n)}{n^{s}}=\frac{\zeta(s)}{\zeta(2 s)} \tag{16}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\frac{\zeta(3 s)}{\zeta(6 s)} & =\frac{\zeta(3 s)}{\zeta(2(3 s))}=\sum_{m=1}^{\infty} \frac{Q_{2}(m)}{m^{3 s}} \\
& =\sum_{m=1}^{\infty} \frac{Q_{2}(m)}{\left(m^{3}\right)^{s}}=\sum_{\substack{n=1 \\
n=m^{3}}}^{\infty} \frac{Q_{2}(m)}{n^{s}}=\sum_{n=1}^{\infty} \frac{h(n)}{n^{3}},
\end{aligned}
$$

where

$$
h(n)= \begin{cases}Q_{2}(m) & \text { if } n=m^{3} \\ 0 & \text { otherwise }\end{cases}
$$

Thus (15) can be written as

$$
D_{q_{2}}(s)=\zeta(2 s) \frac{\zeta(3 s)}{\zeta(6 s)}=D_{s q}(s) D_{h}(s)=D_{s q * h}(s),
$$

where $s q(n)=1$ if n is a square, 0 otherwise. This suggests that $q_{2}=s q * h$
i) Prove that

$$
q_{2}=s q * h,
$$

by showing that the two sides agree on all prime powers.
ii) Use the Composition Method to prove

$$
\sum_{n \leq x} q_{2}(n)=x^{1 / 2} \frac{\zeta(3 / 2)}{\zeta(3)}+O\left(x^{1 / 3}\right)
$$

Note

$$
\sum_{n \leq x} s q(x)=x^{1 / 2}+O(1)
$$

so

$$
\sum_{n \leq x} q_{2}(n) \sim \frac{\zeta(3 / 2)}{\zeta(3)} \sum_{n \leq x} s q(x)
$$

The coefficient here is approximately $2.173254 . .$. , so we might say that there are just over twice as many square-full integers as squares
7. If $f=1 * g$ the convolution method starts with

$$
\begin{equation*}
\sum_{1 \leq n \leq x} f(n)=\sum_{1 \leq a \leq x} g(a)\left[\frac{x}{a}\right] . \tag{17}
\end{equation*}
$$

Use this equality to show that for Euler's phi function ϕ and integral N we have

$$
\sum_{1 \leq a \leq N}\left[\frac{N}{a}\right] \phi(a)=\frac{1}{2} N(N+1)
$$

8. i. Recall

$$
\sum_{n \leq x} d(n)=x \log x+O(x)
$$

Prove, by using Partial Summation on this result, that

$$
\sum_{n \leq x} n d(n)=\frac{1}{2} x^{2} \log x+O\left(x^{2}\right)
$$

ii. In a previous Question Sheet you showed that $\sigma * \phi=j * j$. Use this to show that

$$
\sum_{n \leq x}(\sigma * \phi)(n)=\frac{1}{2} x^{2} \log x+O\left(x^{2}\right)
$$

Hint make use of part i.

