Problem Sheet 4

1. a) Evaluate

$$\sum_{n \le x} \frac{\sigma(n)}{n}.$$

b) By Partial Summation deduce

$$\sum_{n \le x} \sigma(n) = \frac{\zeta(2)}{2} x^2 + O(x \log x).$$

Hint Find f such that $\sigma(n) / n = \sum_{d|n} f(d)$.

2. On Problem Sheet 3 it was shown that $Q_k = 1 * \mu_k$ where Q_k is the characteristic function of the k-free integers while $\mu_k(a) = 1$ if $a = m^k$ for some integer m, 0 otherwise. Use the Convolution Method to show that

$$\sum_{n \le x} Q_k(n) = \frac{x}{\zeta(k)} + O\left(x^{1/k}\right),$$

for $k \geq 2$.

3. Look back in the notes to recall how the result

$$\sum_{n \le x} \frac{1}{n} = \log x + O(1)$$

was improved to

$$\sum_{n \le x} \frac{1}{n} = \log x + \gamma + O\left(\frac{1}{x}\right). \tag{13}$$

Use the same method to improve Corollary 4.7 to

$$\sum_{n \le x} \frac{Q_2(n)}{n} = \frac{1}{\zeta(2)} \log x + C + O\left(\frac{1}{x^{1/2}}\right),$$

for some constant C.

(Unfortunately, this doesn't directly lead to an improvement for $\sum_{n \le x} 2^{\omega(n)}$, just as (13) doesn't directly lead to an improvement for $\sum_{n < x} d(n)$.)

4. Prove by induction that

$$\sum_{n \le x} d_{\ell}(n) = \frac{1}{(\ell - 1)!} x \log^{\ell - 1} x + O\left(x \log^{\ell - 2} x\right)$$
(14)

for all $\ell \geq 2$.

Hint Assuming (14) use partial summation to prove a result for $\sum_{n \leq x} d_{\ell}(n)/n$. Then use $d_{\ell+1} = 1 * d_{\ell}$ to get a result for $\sum_{n \leq x} d_{\ell+1}(n)$.

5. a) Prove that

$$\sum_{n \le x} \frac{\sigma(n)}{n^2} = \zeta(2) \log x + O(1) \,.$$

b) Prove that

$$\log x \ll \sum_{n \le x} \frac{1}{\phi(n)} \ll \log x.$$

Hint for part b) use a result from Problem Sheet 3 which combines $\sigma(n)$ and ϕ .

6. In Problem Sheet 4 the characteristic function, q_2 , of square-full numbers was defined. So on prime powers $q(p^a) = 0$ if a = 1, 1 if $a \ge 2$. It was shown there that

$$\sum_{n=1}^{\infty} \frac{q_2(n)}{n^s} = \zeta(2s) \frac{\zeta(3s)}{\zeta(6s)}.$$
 (15)

Recall that

$$\sum_{n=1}^{\infty} \frac{Q_2(n)}{n^s} = \frac{\zeta(s)}{\zeta(2s)} \tag{16}$$

Therefore

$$\frac{\zeta(3s)}{\zeta(6s)} = \frac{\zeta(3s)}{\zeta(2(3s))} = \sum_{m=1}^{\infty} \frac{Q_2(m)}{m^{3s}}$$
$$= \sum_{m=1}^{\infty} \frac{Q_2(m)}{(m^3)^s} = \sum_{\substack{n=1\\n=m^3}}^{\infty} \frac{Q_2(m)}{n^s} = \sum_{n=1}^{\infty} \frac{h(n)}{n^3},$$

where

$$h(n) = \begin{cases} Q_2(m) & \text{if } n = m^3 \\ 0 & \text{otherwise.} \end{cases}$$

Thus (15) can be written as

$$D_{q_2}(s) = \zeta(2s) \, \frac{\zeta(3s)}{\zeta(6s)} = D_{sq}(s) \, D_h(s) = D_{sq*h}(s) \,,$$

where sq(n) = 1 if n is a square, 0 otherwise. This suggests that $q_2 = sq * h$

i) Prove that

$$q_2 = sq * h,$$

by showing that the two sides agree on all prime powers.

ii) Use the Composition Method to prove

$$\sum_{n \le x} q_2(n) = x^{1/2} \frac{\zeta(3/2)}{\zeta(3)} + O\left(x^{1/3}\right).$$

Note

$$\sum_{n \le x} sq(x) = x^{1/2} + O(1) \,,$$

 \mathbf{SO}

$$\sum_{n \le x} q_2(n) \sim \frac{\zeta(3/2)}{\zeta(3)} \sum_{n \le x} sq(x) \,.$$

The coefficient here is approximately 2.173254...., so we might say that there are just over twice as many square-full integers as squares

7. If f = 1 * g the convolution method starts with

$$\sum_{1 \le n \le x} f(n) = \sum_{1 \le a \le x} g(a) \left[\frac{x}{a}\right].$$
(17)

Use this equality to show that for Euler's phi function ϕ and integral N we have

$$\sum_{1 \le a \le N} \left[\frac{N}{a} \right] \phi(a) = \frac{1}{2} N \left(N + 1 \right).$$

8. i. Recall

$$\sum_{n \le x} d(n) = x \log x + O(x) \,.$$

Prove, by using Partial Summation on this result, that

$$\sum_{n \le x} n d(n) = \frac{1}{2} x^2 \log x + O(x^2).$$

ii. In a previous Question Sheet you showed that $\sigma * \phi = j * j$. Use this to show that

$$\sum_{n \le x} \left(\sigma * \phi\right)(n) = \frac{1}{2}x^2 \log x + O\left(x^2\right).$$

Hint make use of part i.